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Preface

This research studied the ordinary least-squares,

weighted least-squares, median slope and mean slope

techniques for fitting data with learning curve theory. The

basic idea was to find the best technique to use for equal

and unequal lot data with normal, triangle and Cauchy error

term distributions. Along the way, the Cauchy distribution

proved to be too unwieldy and was dropped.

The analysis showed that no technique was best in any

particular situation, each technique had tradeoffs among t h

estimates of the parameters (first unit cost and learning

curve coefficient), the dispersion of the data points around

the fitted line and the range and bias of future predictions.

However, the data should improve your understanding of these

techniques and their limitation when you use them in the

future.

I wish to thank my thesis advisor, Roland D. Kankey, for

his tireless efforts in making this the best research that it

could be. I also wish to thank my wife, Michelle, for

putting up with all my fits when I had 50 computer runs

spread throughout the house and couldn't find the one I

wanted, and for her efforts in helping me get the thesis

finished in a timely fashion.

Charles R. Avincer
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Abstract

' This thesis was basic research on fitting techniques for

, learning curve. The unit formulation of the learning curve

theory was fit using two parametric fitting techniques,

ordinary least-squares and weighted least-square, and two

non~arametric fitting techniques that were called median

slope and mean slope. Comparisons were made between the

techniaues in four data cases, eiual lot sizes with normal-.

distributed error terms, unequal lot sizes with normally

isr buted .error terms, equal lot sizes wit- triangularly

jistributed error terms and unequal lot sizes with

triangularly distributed error terms. The possibility that

error terms could be distributed based on the Cauchy

distribution was tried and rejected.

The data for t.ese four cases was simulated in he S1c

S/st2m and hased un a first unit cost ot 27,330 and an 307

"rarning curve 31oce. The normal error terms used a standarc

dLstribution of .12 (in logarithmic form) and the trianqle

error terms used a range of -. 36 to .26 (in logarithmic fform

to include all error terms. The learning curve heuristic was

used to determine lot plot points.

The fitting techni:ues were corolared on their estimation

of the parameters (first unit cost and the learning curve

coefficient), the dispersion of the data points to the fitted

line and the predictions of future costs.
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Analysis showed that in cases of equal lot sizes the

ordinary least-squares technique has more bias than the

nonparametric techniques, but still is a good estimator. In

cases of unequal lot sizes the weighted least-squares and the

ordinary least-squares techniques performed well. Ordinary

least-squares estimated the uparameters with the least bias

but had average predictions errors that increased with the

unit number. Wei ghted least-scuares estimated the -artmet-rs

with the most bias and had predictions errors that, on

average, started high and turned low as the unit number 'lot

larger. The nonparametric techniques did a better job of

predicting future costs, in that the mean predictions were

closer to the population costs. However, these techniques

had wider ranges of predictions.

Because this was basic research, there are many areas

'r further research. These areas include the study of

nonlinear regression, weights other than lot size for t2e

'weighted least-squares technisue and statistical testingc

bias based on increased production runs of 500 or iCC0 .1tred

...-

ix
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ANALYSIS OF LEARNING CURVE FITTING TECiHNI'UFS

I. Introduction

General Issue

Department of Defense and Air Force leaders are

concerned with the management and control of cost to prccure

weapons systems. Accurate cost forecasting or prediction is

a vital element of cost management and control. Proper

estimation of production costs, the most significant portion

of acquisition costs, is critical if DOD decision makers are

to properly choose between the various alternate force weapon

systems. As Gansler (6:3) and Bryan and Clark (3:105)

* indicate, military acquisition programs in the recent past

.lave all too often e2ncountere- d uncomfortable levels of cost

growth. Since errors in cost estimates are contributors tc

this cost growth, accurate cost estimation is vital if cost

growth is to be minimized. The identification and analysis

of alternate cost estimating techniques, and the comparison

among and between existing techniques, contributes to the

"| development of the profession.

1%I
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Specific Issue

Weapon system production costs fall into two categories.

There are recurring costs, such as labor and material, and

non-recurring costs, such as factory setup. Historically,

recurring costs are the largest part of the costs to produce

weapon systems. So, estimation of these recurring costs is

very important. Recurring production costs are estimated

with the use of the learning curve theory. This ubiquitous

technizue has achieved the status of a standard accepted cost

*analysis tool. The learning curve theory, sometimes referred

to as the cost improvement curve theory, states that costsE
decrease in a regular pattern as more units are produced

(11:16). For example, the uJnit formulation of the learning

curve states that costs to produce a unit decrease by a

constant percentage as the cumulative number of units

produced doubles (1; 19). If the cost to produce the third

unit was $10 and costs reduce by 10 percent between doubles,

the sixth unit would cost S9 and the twelfth unit would cost

S8.10.

The most common way to estimate the learning curve

function from actual data uses a least-squares fitting

technique. Most who use this technique then assume that

errors follow a normal (or Gaussian) distribution. The4

normal probability distribution is assumed to account for the

random fluctuation in costs. This random fluctuation is

commonly referred to as the random error term. While this

2AQ
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technique is very popular, there are other techniques of

fitting a mathematical function to the data and other

probability distributions that could be used. This thesis

*compares results of various curve fitting techniques given

different error term probability distributions, determines

the situations where each technique works best and compares

the advantages and disadvantages of each.

investigative Questions

This thesis covers three main areas. First,

identification of the parametric techniques currently used to

determine learning curve functions and identification of

nonparametric techniques that could be used to determine

learning curve functions. Second, identification of

probability distributions for the random error terms. This

identification includes the currently used probability

distrihutions and other potential distributions. Third,

evaluation of the fitting and forecasting performance of each

technique under different conditions. Results of the

selected curve fitting techniques are compared over various

combinations of error term probability distributions and lot

sizes of production units.

Background

The learning curve theory was first published in 1936 by

Wright (19). Wright advanced the theory that cumulative

average costs to produce aircraft decreased by a constant

3



percentage as the number of aircraft produced doubled. He

also used his theory to review the cost of producing

automobiles. This theory has been applied to many production

items since 1936. Learning curves are used extensively

throughout DOD for cost estimating, contracting, planning and

scheduling.

There are two formulations that are commonly used for

learning curve work (2; 1). First, the unit formulation,

which states that the cost to produce each unit declines by a

constant percentage as the number of units produced ar?

doubled. Second, the cumulative average formulation, which

states that the average cost of all units produced declines

by a constant percentage as the number of units produced

doubles. The unit formulation was selected for use in this

research because it is favored by theoreticians and

4. practioners; and is most tractable.

The equation for the unit formulation of the learning

curve is:

Y = A * XB

where

Y = the cost of each unit
A = the cost of the first unit

X = the sequential unit number in the production. For

example X=101 says that the formula will be used to
compute the cost of unit number 101

B = a constant related to the rate of cost improvement
(2: Chap 7,8-9), this number will be called the
learning curve coefficient in this thesis

The unit formulation of the learning curve is based on the

premise that a constant percentage change in the cost of a

"44.4



unit will drive a constant percentage change in the unit

cost. This means that formula (1) produces a straight line on

log-log graph paper where equal distances between numbers

represents equal percentage changes (1:10-12). Formula ()

is thus often said to be a log-linear function (see Figures I

and 2 on page 6). Because of this logarithmic property,

formula (I) can also be written as:

Y' = A' + B * X' (2)

where

Y' = in (Y)
A' = In (A)
V = in (X)
in = the natural logarithm function

and is called the linear form of the unit formulation. This

second formula is derived from formula (1) by taking the

natural logarithm of each side of the equation. Formula (2)

can be plotted on standard graph paper and will produce a

straight line. One term peculiar to the theory is the idea

of a learning curve slope. A ten percent rate of learning

(or reduction in cost) between doubled quantities is

equivalent to a "learning curve slope" of ninety percent, a

twenty percent rate of learning is equivalent to an eighty

percent slope. For the purposes of this research it is

sufficient to note that there is a direct relationship

between the B parameter, the learning curve slope and the

learning rate. Given any one, the others can be uniquely

identified. For a more detailed discussion of the learning

curve theory see Kankey's article, "Learning Curves: A

5
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Review" (11:16-19); Wright's article, "Factors Affecting the

Cost of Airplanes" (13:122-128); Volume 1, "AFSC Cost

Estimating Handbook" (2:Chap 7); or Hayes and Wheelwright's

chapter, "The Experience Curve" in their book Restoring Our

Competitive Edge: Competing Through Manufacturing (7:229-

274).

Limitations and Assumptions of the Study

Limitations.

1 . Only the unit formulation is studied in this thesis.

2. Only one slope for the population is considered.

All simulation is based on one learning curve slope.

3. Only the case of a standard multiplicative error

term is considered (see 2. below under Learning Curve

Assumptions).

4. Lot plot points are determined using the learning

curve heuristic (see the Equal Lot Data section of Chapter 3

for an explanation of this neuristic).

Learning Curve Assumptions.

1. The population follows the unit formulation of rhe

learning curve theory.

2, The unit formulation of the learning curve is

specified in standard form by:

7
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Y = A * XE * E (3)

whe r e

Y = the cost of the xth unit
. A = the cost of the first unit

B = a constant related to the rate of cost improvement,
this number will be called the learning curve

<" coefficient in this thesis.
X = the unit number

SE = the multiplicative error term.

This is a multiplicative model which is log-linear.

Therefore, any probability distribution of the error term

will oe specified in the transformed state, that is to say in

the linear form.

3. The unit formulation of the learning curve is

specified in linear form by:

Y' = A' + B * XI + e (4)

where

Y' = the natural logarithm of the cost of the xth unit
A' = the natural logarithm of the cost of the first unit
B = the same as in formula (3)
V = the natural logarithm of the unit number
e = the random error term = In(E) from formula (3j
A' and B' are the p)arameters to be estimated

Model Assumptions.

I. The expected value of the cost of unit x can be

wr itten:

E(Y' x )  = A' + B * X' (5)

where

E(Y' x ) = the expected value of y given x
the other variables are defined the same as in

equation (4)

.3
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2. The random error terms, e, are independent. That is

to say, the value of the error term at a given x does not

depend upon the value of the error term at any other x.

3. The random error terms, e, come from poFulations

each having a mean of zero and a constant variance. This

implies that any probability distribution of the random error

term applies to the unit learning curve formula in the linear

form, formula (4). For instance, if the normal probability

-iustribution is specified in the linear form, the

"distributaon is called log-normal in the standard form of the

model. It should be noted that a log-normal distribution is

very dif erent from a normal distribution.

Definitions

Random error term - the difference between the actual

value of an item and the expected value of that item. The

random error can te viewed a3 the portion of the cost of the

xth unit not specified by formula (3) . That is to say, the

effect of any variable, other than the unit number, on the

cost of a unit contributes to the error term. For example,

the error term associated with your height would be the

difference between your height and the average height of all

people. If your height was 73" and the average height of all

4I people was 71", the error term would be the 2". When dealing

with the unit learning curve, the randoi error term would be

the difference between the actual cost of the xth unit and

the expected cost of the xth unit as specified by formula (5).

9 "
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Nonparametric statistics - statistics that require few

assumptions about underlying populations, most notably the

assumption about the normal distribution of the population

(8:1). Nonparametric statistical tests do not require a

normal population assumption and are generally easier to use

and understand according to Hollander and Wolfe (8:1). They

. go on to state that, based on th-oretical investigations,

these nonparametric statistics do not usually forgo much in

comparison to parametric statistics. Conover states:

A statistical method is nonparametr4c if1 it satisfies at
least one of the following criteria:

1. The method may be used on data with a nominal
* scale of measurement.

2. The method may be used on data with an ordinal
scale of measurement.

3. The method may be used on data with an interval or
ratio scale of measurement, where the distribution
function of the random variable producing the data
is either unspecified or specified except for an
infinite number of unknown parameters. (5:94)

V

N Conclusion

The importance to DOD of accurate estimation of weapons

systems cost cannot be overstated. The recurring production

costs of these weapons systems are a major part of the total

* life cycle cost of the weapon system. This thesis analyzes

several aspects of the method almost universally used to

predict the recurring cost, learning curve theory. The unit

formulation of the learning curve theory is analyzed with

both parametric and nonparametric techniques.

10
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II. Literature Review

Two literature reviews were performed, one to identify

i~ fitting techniques for the learning curve and the other to

identify potential probability distributions for the error

term. An attempt to find previous studies comparing these

fitting techniques proved fruitless, no previous studies were

located.

Fitting Techniques

V A literature review was performed to identify the

fitting methods or techniques used to determine the

mathematical formula of a learning curve given existing data.

The review identified the current techniques used to estimate

the learning curve parameters and some additional techniques

that could be used. Advantages and disadvantages of each

technique were also identified. All fitting techniques

identified fit linear data so the transformation from log-

linear to linear is necessary before the intercept (A) and

the slope (C) parameters can be estimated. Each technique

estimates the value of the a and b statistics (estimates of

the transformed parameters A' and B') for formula (2) based

on existing data. Traditionally, population parameters are

denoted with Greek letters, e.g. alpha and beta, but I will

use capital letters, e.g. A and B. Statistics, or estimates

of these parameters are Roman, e.g. a and b.

4ii
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Current Techniques. Currently, there are two techniques

that are commonly used to estimate the learning curve

formula, ordinary least-squares and weighted least-squares

(2:Chap 7). Both of these techniques are among the

parametric techniques commonly referred to as regression

techniques.

Ordinary least-squares is the most common technique

(2:Chap 7). Least-squares is a parametric technique that has

some underlying assumptions. These assumptions were

discussed as model assumptions in the Introduction chapter.

The least-squares technique determines the a and b statistics

for formula (2). This determination is done by summing zne

squared differences between each lot's average actual cost

per unit and the average cost of each lot estimated by the

improvement curve formula. For a more detailed explanation

of the ordinary least-squares technique, see Neter, et. al.,

Applied Linear Regression Techniques (15:23-52). Random

errors are assumed to be normally distributed when using

-# ordinary least-squares, according to Johnston in Econometric

M ethods (1:l68-l71,l81). The main advantages of the least-

squares technique is the ease of use, the ability to get

quick answers, and the technique's ability to still give good

answers when some of the assumptions about the technique are0O9

violated a small amount. The main disadvantages are that the

.technique is not theoretically correct when the lots have

different weights and that the technique requires a specified

*112
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probability distribution for the error terms before any

testing or interval estimating (15:48). Lots have equal

weights when the same number of units are in each lot. When

lots have different numbers of units in each lot, the lots

have different weights. For the specific learning curve

case, the normal probability distribution assumption causes

the error term to be normally distributed in the log-linear

or transformed state (as in formula (4)).

;Weighted least-scuares is used when the data has unequa

production lot sizes. For example, weighted least-squaros

would be used if the data contained the average cost of each

lot and the first lot contained 20 aircraft, the second

contained 50, and the next seven lots contained 100 each.

Weighted least-squares would give less emphasis to the first

two lots since they are small and more emphasis to the last

-b seven lots. The weighted least-sqjuares method of dete mining

tne statistics a and b would weight each average cost based

on tne numLer of units in the lot (15:167-172). The main

reason behind using weighted least-squares rather than

ordinary least-scuares is because the expected variance of

Lot costs is not -he same (15:16R). This use of weigh ting

is an application of the Central Limit Theorem, which states:

1.
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If Y, * are independent random observations from a

population with probabiL ty function f(Y) for which [the

variance] si'ma-squared is finite, the sample mean Y:

S= the sum from i = 1 to n of Yi/n

is a,.)rcoxmately normally distributed when the sample
size n is reasonably large, with mean E(Y) and variance

(sigma-s-uared), n (15:6) .

According to Murphy, it is easily shown that the variances of

each lot are unejual, even if the random error terms have the

same variance (14). From the above theorem, if the random

error for an aircrafz were 20000, then the random error for

the first lot would be 1000 (20000/20), the random error tor

the second lot would be 400 (20000/150) , and tne random error

fOr the third lot would be 200 (20000,'lC) .Murphy explains

that the variance of the average cost of each lot equals "--e

variance of the random error term divided by the lot size.

;.ihen lot sizes are different, the variances must be different

if the random error terms have equal variances as the assum:-

t'ions require. The main advantages of the weighted least-

squares best fit technique are the same as the advantages o

.the least-scquares best fit technique. 7he weighted echn_ n-e

reportedly gjives more correct parameter estimates when Icts

have different weights, according to Neter, et. aL. (

172) . The weighted technique gives the same answer as the

ordinary least-sqjuares technique when the lots have equal

weights. The main disadvantage is the assumption of an error

term with a normal probability distribution. There is also

the question of whether using lot sizes for weights

14
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overstates/overweights the large lots when the data is

transformed into logarithms. For example, a lot composed of

-4 units 11 through 20 includes a doubling (100% increase) while

a lot composed of units 150 through 200 has only a 30%

increase. Should the larger lot get five times the weight of

the smaller lot? This question is deferred to follow-on

research.

Other Techniques. The literature review disclosed two

methods of determining the parameters for formula (2) when

nonparametric techniques are used. The first technique is

identified by Hollander and Wolfe and by Conover (3:200-206;

4:263-271) and will be called the median slope technique.

The second technique is identified by Hollander and Wolfe

(8:206-208) and will be called the mean slope technique.

Both of these techniques were tested in this thesis and both

are nonparametric because no probability distribution is

specified. This lack of a probability distribution meets tire

third condition Conover dcfines for a nonparametric

statistical method (see page 10). Additional techniuues that

were not used in this thesis were reviewed.

The main advantages of nonparametric techniques,

according to Conover (5:3), are that the probability

-'- distribution of the error term does not have to be known or

assumed, a "simple and unsophisticated" model is used and the

application of the technique requires less math because the

model is simple. The main disadvantage is that, since the

15
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probability distribution is not known, estimates of equation

parameters and estimates of future costs will have a much

wider confidence interval. No other specific advantages or

disadvantages can be attached to the median slope or the mean

slope technique.

The median slope technique suggests that the points be

put in order from lowest x to highest x, for convenience of

analysis, and then requires that the slope between each pair

of points be computed (8:205), reference Figure 3. (Note:

for this thesis these points are expressed in logarithms.)

A' est.0

-- " ,,, (X lym

'p.M

Figure 3. Illustration of
Median Slope Technique

These slopes are then rank ordered and the median slope taken

as the estimate of the B parameter from formulas (1) and (2).

The A' parameter is estimated by using the median x and

16
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median y values (4:266-267) , as indicated by the dotted line

in Figure 3. When there are an even number of points, the

average of the two middle slopes is used and the average x

and average y associated with the two middle points are used

(8:205; 4:266-267).

The mean slope technique also uses the slopes between

each pair of points (8:205-208). A simple average slope is

computed by summing the slopes and then dividing by the

number of slopes. The mean slope technique uses the same

estimation approach for the A' parameter as the median slope

technique (8:206-208).

The four fitting techniques discussed will be used to

estimate the unit formulation parameters of the learning

curve in this thesis. A technique that was identified, but

was not used is that of nonlinear regression. Nonlinear

regression, according to Neter, et. al., is an iterative

process that can require a great deal of time to solve

(15:466). Evaluation of nonlinear regression for learning

curve fitting would be an interesting area for further study,

but was not included in this research.

Probability DistributionsEj" The literature review allowed selection of three

0,1 probability distributions for the error term. The normal

probability distribution is currently assumed for the

distribution of the error term. The review identified two

other probability distributions that could be used, the

17
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triangle distribution and the Cauchy distribution. These two

additional distributions were identified on the belief that

the normal distribution was reasonable, or people would not

be usino it, and any other distribution identified should be

similar to the normal distribution.

Normal Distribution. The normal probability

distribution is usually assumed for the error terms. The

normal distribution is smooth, symmetrical, continuous and

bell shaped. It requires that, as the sample size gets very

large, a specific percent of the random errors fall within

one standard deviation (68.26%), within two standard

deviations (95.44%), and within three standard deviations

(99.74%) (13:201-202; 15:517).

Triangle Distribution. The triangle probability

distribution can be symmetrical or asymmetrical. This

distribution is smooth with a peak at the most likely point,

continuous with a minimum and maximum possible value and

shaped like a triangle. The shape of the distribution can

be specified by the distribution parameters; lowest point,

most likely point (where the distribution will peak), and the

highest point (16:269) . When the distance between the

lowest point and the most likely point equals the distance

between the highest point and the most likely point, the

distribution will be symmetrical, otherwise the distribution

is skewed. When using the triangle distribution with the

learning curve only the symmetrical distribution will be used.

A'V 18
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Cauchy Distribution. The Cauchy probability

distribution is related to Student's t distribution, as both

distributions are forms of a Pearson Type VII distribution

(9:13, 154). The family of Pearson distributions are all

related to the normal distribution, according to Johnson and

Kotz (9:9-15). The Cauchy distribution is symmetrical,

continuous, smooth, and shaped similar to the normal

distribution. The Cauchy distribution has "longer and

flatter tails (9:154)" than the normal distribution. (No-e

that flatter tails are often also called fatter tails.)

Johnson and Kotz specify that the Cauchy distribution, with

location and scale parameters equal to 0 and 1, respectively,

"is the Student's t distribution with 1 degree of freedom

(9:156-157) ."

The literature review for techniques to fit learning

curve data yielded four techniques that were used in this

thesis: ordinary least-squares, median slope, mean slope and

weighted least-squares. The literature review for the

probability distributions identified three error term

distributions that were used for this thesis: normal,

, triangle and Cauchy.
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III. Methodology

The analysis of fitting techniques was a three step

a'K process. First, costs for production run lots were simulated

using the SAS software system for data analysis, using known

model parameters A and B and a fixed error term distribution.

Second, the various techniques of fitting the learning curve

were used to estimate the model parameters. Third, analysis

of the statistics, dispersion and forecasting ability were

performed. The various techniques were compared for the

different lot data and for the different error term

distributions.

The true relationship was selected to be an 80% slope

learning curve with a first unit cost (A) of 25,000. A

learning curve slope of 80% was selected as a typical slope

for airframe assembly operations. An 30% learning curve

slope yields a B value of -. 321928095. The general ob-ective

was to see how well each of the fitting techniques estimated

PM the population or true relationship (A and B) and estimated

future costs under each of six cases. An ideal estimating

technique would, on average, estimate A and B correctly, have

a small dispersion of values and forecast with a tight,

symmetrical distribution around the true value. The six

cases considered in this study are based upon combinations of

lot sizes, and error term distributions. These six cases

are:
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- Case I: Equal ot sizes, normal errors

- Case II: Unequal lot sizes, normal errors

- Case IVl: Equal lot sizes, triangle errors

- Case IV: Unequal lot sizes, triangle errors

- Case V: Equal lot sizes, Cauchy errors

W - Case VI: Unequal lot sizes, Cauchy errors

Simulation of Data

-,e SAS System was used to simulate the data for lots

from a production run. First, learning curve data was

generated for each production run. Second, the data in each

p ,rducton rn was separated into lot data, with equal size

lots. Third, unequal lot sizes were identified and each

production run was broken into unequal lots. These data

creation steps involved the use of many SAS functions.

Production Runs. The simulation of production runs

involved the use of three SAS random error generation

functions, each based on a different probability

distribution. A program was written to generate costs from a

production run for units 1 through 210. This number of units

was considered to be long enough to allow for valid

comparisons, yet not overstrain the capability of the

computer system for both space and processing time. The data

was generated in the log-linear state and then transformed to

the standard state. The data was generated with the formula:
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Y' = A' + B * X' + e (6)

where

the variables are defined in formula (4) with

A' = ln(25000) = 10.12663110

B = ln(.8) / ln = -0.321928095
X' = in(units I through 210)
Y' = in(cost)

except where the error term is

e = a random error term times a sizing value

The SAS function for random errors from a normal distribution

is RANNOR(seed) (16:267-268). The SAS User's Guide: Basics

states that this function will generate a value from a normal

distribution with a mean of zero and a standard deviation of

one. The seed is a number used to start the random number

generation process. For the normally distributed random

error in formula (6), the error formula was (16:267-268):

e = RANNOR(seed) * sigma (7)

wher e

seed = 1446
sigma = the standard deviation

For the triangular distribution random error in formula (6),

.he error formula was (16:269):

e = (BT-AT) * RANTRI(seed,(CT-AT)/(BT-AT)) + AT (8

* where

seed = 1346
V BT = the highest triangle distribution value
A. AT = the lowest triangle distribution value

CT = the most likely triangle value = 0

For the Cauchy distributed random error in formula (6), the

error formula was (16:265):

5.
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e = RANCAU(seed) * sigma (9)

where

seed = 446
sigma = a scale parameter similar to the normal

distributions standard deviation

The values for Y' and X' were transformed to regular terms

with the following equations:

Y = EXP (Y') (10)

X = EXP (X') (11)

where

EXP (Y') = e i.e. Y' equals the natural

logarithm of Y.
Y = the simulated cost
X = the unit number associated with the simulated cost

Data was simulated for 100 production runs using each of the

three error term distributions.

Equal Lot Data. The data for each of the 100 production

runs for each of the three error term distributions were

turned into lot data with each lot size equal to 30 units.

in addition, the lot plot point and mean cost of the inits in

each lot were determined. The lot plot point was determined

based on the standard learning curve heuristic where the plot

point is equal to half of the lot size plus the value of the

last unit before the lot started. When the lot size is 30

and the first unit of the lot was unit 121, the lot plot

point is 135 (30 / 2 + 120). When the first lot has 10 or

more units the lot plot point is computed by the number o7

units in the lot divided by three.
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4.. Unequal Lot Data. The data for each of the IC0

production runs for each of the three error term

distributions was also used to get unequal lot data. The

sizes of the first six lots were determined using the SAS
,...

function, RANUNI(seed) in the following equation (16:236-

238,269):

lot size = scaling factor * RANUNI(seed) (12)

where

scaling factor a number based on the proposed lot size
seed = 1515

RANUNI(seed) = generates a uniformly distributed value
between 0 and 1

Lot sizes were in the ranges shown in Table 1.

- Table 1. Range of Lot Sizes

Lot Smallest Largest
Number Lot Size Lot Size

1 2 10
2 15 25
3 20 30
4 25 35

5 30 40
6 40 50
7 20 78

* Lot seven was the remainder of the units needed to bring the

total number of units to 210. Lot plot points and the mean

lot cost were determined the same way as for equal lot data.

Estimation of Learning Curve Formulas

For each production run a learning curve formula was

estimated using the fitting techniques discussed in the

2 4
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K. literature review. These fitting techniques are ordinary

least-squares, weighted least-squares, median slope and mean

"- slope.

Ordinary Least-Squares (15). The ordinary least-

squares technique was run on the SAS system. The data was

converted to linear form with the following transformations:

y = In (Y) (13)

x = In (X) (14)

where

Y = the average cost of a production lot
X = the unit number of the median unit in the production

lot
* in (variable) = the natural logarithm function

The ordinary least-squares procedure that was run is called

PROC REG (17:658). The statements required were:

PROC REG;
MODEL y = x;

wilere the statements are defined in the SAS User's Guide:

Statistics (17:658-659).

Weighted Least-Squares (15). The weighted least-

squares technique was also run on the SAS system. This

technique was the same as the technique for ordinary least-

squares except the x transformation was:

x = m * (in (X)) (15)

where

the variables are defined for formula (14) and
m = the number of units in the lot

The weighted least-squares technique was only run on

production data with different lot sizes because, as Neter

25
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states, the estimated parameters from weighted least-squares

equal the estimated parameters from ordinary least-squares

when the lot sizes are equal (15:167).

Median Slope (8:200-208; 4:263-271). Since no program

existed, a program was written on the SAS system. First, the

program transformed the data as was done in formulas (13) and

(14). Second, the program calculated the slope between each

lot of a production run from first lot to last lot, for the

seven lots there were 21 slopes. Third, the slopes were rank

ordered and the median slope picked. Fourth, the procram

determined the median lot and then determined the value of

the a statistic from the following formula:

a = Ym - bm * Xm (l)

where

ym = the average cost from the median lot in logs

xm = the x value from the median lot in logs

b_ = the median slope, estimate of the parameter B

a = the first unit cost statistic, estimate of the
parameter A'

Mean Slope (8:206-203). Again, no program existed so a

program was written on the SAS system. The program used the

slopes previously determined and computed their mean. Then

the value of the a statistic was determined fr-m formula (16)

., with one exception. The value of bm was the mean of the

slopes.

2 6
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Analysis of the Curve Fittina Techniques

The analysis of the formulas generated using the

simulated data was done in three areas. First, the

distribution of the statistics about the population or true

parameter value were compared for each case. Second, the

fitting techniques for each case were compared based on two

measures of dispersion used by forecasters, the mean absolute

deviation (MAD) and the mean squared deviation (MSD) Third,

the dispersion of the predicted cost of future units was

compared for each of the fitting techniques within each case.

Separate comparisons of each of the fitting techniques were

made for each case.

Distribution of the Statistics. The distributions of

the a and b statistics were reviewed. The 100 parameter

estimates for each A and each B were displayed using Tukey's

* box-and-whisker type plots (18:39-42). These a and b

statistics were from one series of 100 production runs for

each case. Then the plots were compared. For instance, the

box-and-whisker plots for the A parameter estimates from all
p.

fitting techniques for the equal lot, normal error term case

were compared.

The Tukey box-and-whisker plot identifies the end

points, the first (25%) and third (75%) quarter percentile

points and the median point of a distribution. The style of

the plot, as Tukey explains in Exploratory Data Analysis

(18:32,39-41), is to draw a box from the first to the third
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quarter percentile points with a bar at the median and to add

a separate line, or "whisker," to connect each end point to

- the box. This plot was modified by addition of the 5%, 95%

and mean points. The plot and the data points were generated

using the SAS procedure with plotting option,

PROC UNIVARIATE PLCT (16:1182,1187-1188)

The plots were then hand drawn from the data provided cy the

SAS procedure. Since converting these plots to publication

quality is a very time consuming process, only a few sample

plots are included in this thesis.

Dispersion of the Fitting Techniques. The learning

curve formula repres-its the theoretical mean cost for each

lot data point in the least-squares techniques and a similar

idea in the other techniques. Variability of the data

(13:29-30) about the estimated line is measured through use

of the mean absolute deviation (MAD) and mean squared

deviation (MSD). These variability measures plus many other

measures can be used to reflect the accuracy of forecasts

according to Kankey and Thompson (12:1-2). The MAD and the

MSD were used to measure the raw error for each production

run between the actual cost of each lot and the predicted

- cost of each lot based on the fitted formula. These measures

were chosen because they are the most often used (12:3-4).

Mean Absolute Deviation. The MAD was computed for

each fitting technique and each production run. Each

individual deviation was computed with the formula:

...-. 28
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D = Y - Y (17)

h where

Y = the actual average lot cost

Y = the average lot cost estimated

Then the absolute values of the deviations for a production

run were summed. Finally, the sum of the absolute deviations

was divided by the number of deviations. The average MAD for

each of the different fitting techniques was compared for

each case. Generally, techniques that have a lower MAD for

the existing data are felt to be more likely to have lower

absolute deviations when estimating.

Mean Squared Deviation. The MSD was computed the

same as the MAD, except the deviation amounts were squared

before the sum was computed. As with the MAD, the average

MSD of each of the different fitting techniques were compared

1-by case.

Dispersion of Predicted Values. The key ingredient in

fitting learning curve data is to be able to predict future

costs with accuracy. Costs of units 225 and 800 were

predicted from each learning curve formula. The dispersion

of the predicted values about the theoretical values was

reviewed for each case.

Analysis of the Techniques. A comparison of the curve

fitting techniques was made in three areas. Dispersion of

the statistics, dispersion of the lot plot points from the

fitted equation, and dispersion of the predicted values about

29
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, ' the population or true value. These comparisons were used to
J..

~compare the fitting techniques in each case reviewed.
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IV. Findings

There were a number of interesting results. First,

." scaling of error term distributions was accomplished.

Second, analysis of the fit provided by each technique was

addressed. Third, the fitting techniques were analyzed for

each case, with emphasis on advantages and disadvantages of

each.

Error Term Distributions

Selection of Scale Values. An early step in the

simulation of data was to determine the scaling for each

error term distribution, i.e. standard deviation for the

normal error term distribution; the scale parameter for the

Cauchy error term distribution; and the highest, most likely

and lowest points for the triangle error term distribution.

The idea was to create data with a reasonable amount of

deviation, a deviation that was also comparable with

j deviations in other cases.

To begin, th2 error term scaling parameters were

selected. The determination of the standard deviation ,or

the normal error term distribution was done through an

iterative process. The first error level considered was 5%

of the first unit cost. This resulted in a standard

. deviation of 1250 (25000*.05). This standard deviation would

4result in 99.74% (15:517) of all first unit costs falling
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within three standard deviations or between 0.0000128 and

4.88 X 1013 with a mean of 25,000. This amount of deviation

was too extreme, costs would not be expected to vary this

much. The range was computed using the formula:

EXP(Y' + (3 * e)) (18)

where

EXP( ) was defined in formulas (10) and (11)
Y' = ln (25,000) = 10.12663110
e = ln (1,250) = 7.130898830

The second standard deviation considered was 5% of the

first unit cost in logarithmic form. This resulted in a

standard deviation of .506331555 (10.1266311*.05) in

logarithmic form. This standard deviation would again result

in 99.74% (15:517) of all first unit costs falling within

three standard deviations, or between 5,473 and 114,191 with

a mean of 25,000, based on formula (18) with e = .506331555.

The range was also considered too extreme. Cost of the first

unit would not vary this greatly in most cases.

The third standard deviation considered was .12 in

logarithmic form. This was selected subjectively based on

reasonable magnitudes and resulted in 99.74% (15:517) of all

first unit costs falling within three standard deviations, or

between 17,442 and 35,833 with a mean of 25,000, based on

formula (18) with e = .12. While this standard deviation

yields a large range, it is acceptable. The range for the

210 t h unit was between 3,119 and 6,408 with a mean of 4,470.

This range was also acceptable.
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.The triangle distribution is a finite distribution,

Here, the highest point was .36, based on three standard

deviations of the normal error term distribution used. Since

the triangle distribution was to be symmetrical, the lowest

point would be -. 36 and the most likely point zero. This

distribution resulted in all the first unit costs falling

between 17,442 and 35,833 with a mean of 25,000, based on

formula (18) with e = .12.

Since the Cauchy distribution has the same attributes as

the normal distribution but with fatter tails, the same

value, .12, was used as the scale parameter for the Cauchy

error term distribution. This scale parameter resulted in

approximately 80% (9:155) of the first unit costs falling

within 3.2361 scales, or between 16,955 and 36,863 with a

mean of 25,000, based on formula (18) with (3.2361 * 3)

replacing (3 * e) and e = .12.

Cauchy Error Term Distribution Problems. After the

scale parameters were selected, some trial simulation runs

were made. During these simulation runs, the Cauchy error

term distribution was noted to cause some very extreme

values. Despite the fact that this distribution is similar

f to the normal distribution, it has fatter tails. The Cauchy

distribution thus generated some unusual values. On one run,

the unit cost ranged from 4.8 X 10-23 for unit 164 to 1.1 X

1022 for unit 44. Values became so extreme that the computer
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could not change the costs from logarithmic form. The

logarithmic unit costs ranged from -7017.72 to 2778.005.

For the -7017.72 logarithmic value to be changed to a

cost of 5 (logarithmic 1.609437912), the scale factor would

have to be changed to .000117424. This scale factor would

result in 80% (9:158) of the first unit costs falling within

3.2361 scales or between 24,991 and 25,010 with a mean of

25,000, based on formula (18) with (3.2361 * e) replacing (3

* e) and e = .000117424. Thus, to account for the extreme

values possible with a Cauchy error term distribution, the

scale factor would have to be made so small that the majority

of the variation would be removed. Note that the cost of

unit 44 in the previous paragraph is more than trillions of

times greater than the 1987 national debt and that the cost

of unit 164 in the previous paragraph is virtually zero.

Given the above cited problems, the Cauchy distribution was

dropped from this study and should not be used in future

learning curve simulations. Cases V and VI were deleted from

the thesis.

Conclusion. Parameters that reflect comparable0

probability bounds for the error term distributions have been

selected. The normal and triangle distributions thus defined

1were used in the remainder of this study.

'IMc°-

Analysis of Fitting Techniques

All techniques were analyzed based on their ability to

fit and forecast simulated learning curve data. The
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techniques were first reviewed on the fit achieved and,

second, on the forecasting performance. The review covered

the following cases with the enumerated techniques in the

listed order:

- Case I: equal lot sizes with normal error terms

-- ordinary least-squares technique

median slope technique

-- mean slope technique

- Case II: unequal lot sizes with normal error terms

-- ordinary least-squares technique

-- weighted least-squares technique

-- median slope technique

-- mean slope technique

- Case III: equal lot sizes with triangle error terms

-- ordinary least-squares technique

.median slope technique
-- mean slope technique

- Case IV: unequal lot sizes with triangle error terms

-- ordinary least-squares technique

-- weighted least-squares technique

-- median slope technique

-- mean slope technique

* Analysis -f Fit. The fit of the techniques is analyzed

in two areas, the parameters and the dispersion. ;he

parameter estimates for first unit cost, a, and the learning

curve coefficient, b, are compared along with the dispersion
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of the data points around the fitted line. These analyses

are based on 100 production runs that were generated using a

first unit cost, A, of 25000 and a learning curve slope, B,

of -.321928095 (ln(.8)/in(2)). These numbers are the

population or true values.

Equal Lot Sizes with Normal Error Terms. Analysis

of the box-and-whisker plots in Figure 4 and the data in

Table 2 shows several things. First, note that for the first

Table 2. Estimated First Unit Cost for
Equal Lot Sizes with Normal Error Terms

Population or True First Unit Cost 25,000

Ordinary Median Mean
Least-Squares Slope Slope

Technique Technique Technique

Maximum 27,745.3 Maximum 28,434.5 Maximum 31,078.8
95% 26,004.2 95% 27,511.6 q5% 29,355.0
75% 25,216.2 75% 25,545.7 75% 26,206.2

Mean 24,465.6 Median 24,864.3 Mean 25,150.3
M.. Median 24,419.0 Mean 24,791.7 Median 25,017.5

25% 23,791.8 25% 23,569.8 25% 23,610.5
5% 22,917.5 5% 22,467.5 5% 21,977.4

Minimum 21,879.3 Minimum 21,346.4 Minimum 19,529.0

P'INGE:
Total 5,866.0 7,088.1 11,549.8
1st-3rd Quartile 1,424.4 1,975.9 2,395.7

* BIAS:
Mean -534.4 -208.3 150.3
Median -581.0 -135.7 17.5

* unit costs, the ordinary least-squares technique has the

smallest range, followed by the median slcoe technique, with

the mean slope technique having the largest range. Second,

notice the distributions of the statistic about the true
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value. Bias can be seen if the average and median statistics

are either above or below the population value. It shculd be

noted that, due to the nature of this research, statistical

tests fot the significance of this bias were not included.

Although these differences in average results from the

population or true value are probably not statistically

significant at a high level of confidence, the word "bias" is

most descriptive. The mean slope technique has the least

bias, with the average estimate only slightly high. The

median slope technique has an average estimated first unit

cost that is slightly low, while the ordinary least-squares

technique is significantly lower.

Similar information about the statistic that estimates

the learning curve coefficient is shown in Figure 5 and Table

3. Again note that the ordinary least-squares technique has

the smallest range, the median slope technique has a slightly

larger range and the mean slope technique has the largest

range. As with the first unit cost, some techniques appear

biased. The distributions for the learning curve coefficient

show the mean slope technique has the least bias and is most

closely centered to the population value. The median slope

technique is biased slightly high and the ordinary least-

squares technique is biased significantly higher. The impact

of high bias on the learning curve coefficient parameter is a

higher learning curve slope, i.e. less learning is estimated

than the population experiences.
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Table 3. Estimated Learning Curve Coefficient for
-.", Equal Lot Sizes with Normal Error Terms

Population or True Coefficient = -.321928095

Ordinary Median Mean

Least-Squares Slope Slope

Technique Technique Technique

Maximum -0.290998 Maximum -0.292049 Maximum -0.272929

95% -0.302127 95% -0.300358 95% -0.297986

75% -0.310133 75% -0.309594 75% -0.310900

Median -0.315503 Mean -0.318482 Mean -0.321233
Mean -0.315961 Median -0.318849 Median -0.321773

25% -0.322814 25% -0.326391 25% -0.328686

5% -0.329688 5% -0.339246 5% -0.351119
Minimum -0.344737 Minimum -0.346114 Minimum -0.362477

RANGE:

Total 0.053739 0.054065 0.089548

Ist-3rd Quartile 0.012681 0.016797 0.017786

• BIAS:

Mean 0.005967 0.003446 0.000695

Median 0.006425 0.003079 0.000155

The dispersion of the data points around the learning

curve line shows (see Table 4) the ordinary least-squares

Table 4. Measures of Dispersion for

Equal Lot Sizes with Normal Error Terms

Ordinary Median Mean

Least-Squares Slope Slope
Technique Technique Technique

AVERAGE OF 100:

MAD 646.7 981.1 1,143.3

MSD 102,917.0 330,897.5 525,822.9

1 technique has the lowest average MAD and average MSD, the

median slope technique has the next best average MAD (almost

52% larger than for ordinary least-squares) and average MSD

(more than 221% larger than for ordinary least-squares) and

-'5.- 40

op.-.
N,.



4

the mean slope technique has the greatest amount of

dispersion with an average MAD over 76% greater than for

ordinary least-squares and an average MSD almost 411% greater

than the average NSD for ordinary least-squares. The greater

the MAD, the greater is the dispersion about the learning

curve line. That is to say, the actual points are further

above and below the fitted learning curve line. A gyeater

MSD can be influenced by all the data points or can be more

greatly influenced by one data point that is very far from

the fitted line. These MAD and MSD results are not terribly

surprising since ordinary least-squares attempts to best fit

the line to minimize squared errors, while the other

techniques do not attempt to best fit.

In conclusion, the use of the ordinary least-squares

technique on Case I data resulted in the smallest range and

least dispersion but the most bias in the parameters

estimated. The combination of a low bias on the first unit

cost and a high bias on the learning curve coefficient will

yield high predictions of future costs. On the other hand,

the mean slope technique generally gives the least biased

estimates of the first unit cost and the learning curve

coefficient, but has a much greater range and dispersion of

values. On average, a less biased prediction of future costs

will be made by a learning curve line fit with the mean slope

technique. However, because of the larger dispersion, larger

errors could occur with this technique. The median slope
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technique balanceE the problems of the other two techniques,

a smaller range of possible first unit costs and learning

curve coefficients than the mean slope technique with less

bias than the ordinary least-squares technique.

The next three sections analyze the fitting technique

results for the remaining three cases. The casual reader may

wish to skip to the analysis of cost predictions (page 54) to

see how the techniques predicted future costs in each case.

Turn to Chapter 5 for a summary of findings for all cases.

Unequal Lot Sizes with Normal Error Terms.

A- Analysis of the data through use of box-and-whisker plots

.plots not shown, see data in Table 5) shows that the

weighted least-squares technique has the smallest range for

th. first unit costs. The mean slope technique has the next

largest range followed by the median slope technique. The

ordinary least-squares technique has the largest range. In

terms of bias, the techniques that were used on the equal lot

size data reversed their order with the unequal lot size

data. The ordinary least-squares technique now has the least

-bias, while the median slope technique has almost twice that

amount. The mean slope technique has slightly more high bias

than the median slope technique and the weighted least-

squares technique has the largest high bias, about three

times that of ordinary least-squares. All techniques gave

• ' , ""high estimates for the first unit cost, i e. they were all

biased high. The impact of this high bias results in an
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Table 5. Estimated First Unit Cost for

Unequal Lot Sizes with Normal Error Terms

Population or True First Unit Cost = 25,000

Ordinary Median Mean Weighted
".- Least-Squares Slope Slope Least-Squares

Technique Technique Technique Technique

Maximum 29,168.4 Maximum 28,824.8 Maximum 29,000.0 Maximum 28,825.9

95% 28,172.1 95% 27,776.9 95% 28,380.4 95% 27,900.6

75% 26,633.6 75% 26,512.7 75% 26,541.0 75% 26,680.3

Median 25,317.8 Mean 25,472.2 Median 25,577.9 Median 25,856.7

Mean 25,222.0 Median 25,432.9 Mean 25,512.0 Mean 25,787.9

25% 24,046.3 25% 24,568.9 25% 24,512.9 25% 24,930.0

5% 21,796.7 5% 22,628.7 5% 22,934.7 5% 23,700.2

Minimum 20,991.0 Minimum 21,235.0 Minimum 22,075.6 Minimum 22,122.0

RANGE:

Total 8,177.4 7,589.8 6,924.4 6,703.9

1st-3rd

r Quartile 2,587.3 1,943.8 2,028.1 1,750.3

.1 BIAS:

Mean 222.0 472.2 512.0 787.9

Median 317.8 432.9 577.9 856.7

expected first unit cost estimate greater than the population

value.

The dist':ibutions of the learning curve coefficients

from the box-and-whisper plots (plots not shown, see data in

Table 6) show that the mean slope technique has the smallest
.5,

range followed very closely by the weighted least-squares

technique. The median slope technique has a 15% range

increase and the ordinary least-squares technique has over a

30% increase. The mean and median biases are split for the

ordinary least-squares technique, and the values are very

small. The median slope technique has low bias, three times

greater than the low rating of ordinary least-squares. The
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Table 6. Estimated Learning Curve Coefficient for

Unequal Lot Sizes with Normal Error Terms

Population or True Coefficient = -.321928095

Ordinary Median Mean Weighted

* Least-Squares Slope Slope Least-Squares

Technique Technique Technique Technique

Maximum -0.279564 Maximum -0.287639 Maximum -0.296019 Maximum -0.293522

95% -0.286794 95% -0.300991 95% -0.305469 95% -0.307811

75% -0.310914 75% -0.317822 75% -0.317098 75% -0.320222

4'$ Mean -0.321115 Mean -0.324675 Mean -0.325050 Median -0.326632

Median -0.323132 Median -0.325780 Median -0.325549 Mean -0.326685

25% -0.334554 25% -0.333160 25% -0.333512 25% -0.335174

5% -0.346421 5% -0.340082 5% -0.342080 5% -0.344562

Minimum -0.353979 Minimum -0.353451 Minimum -0.353137 Minimum -0.350645

RANGE:

. Total 0.074415 0.065812 0.057118 0.057123

. lst-3rd

Quartile 0.023640 0.015338 0.016414 0.014952

BIAS:

Mean 0.000813 -0.002747 -0.003122 -0.004757

Median -0.001204 -0.003852 -0.003621 -0.004704

mean slope technique has approximately the same overall low

% bias as the median slope technique while the weighted least-

squares technique has the largest low bias, almost 45% more

than for median slope. The result of low bias f)r the

learning curve coefficient is a lower learning curve slope,

that is the estimated decrease in cost more than the

-j population experiences.

The dispersion of the data points (see Table 7) around

the fitted learning curve line shows the ordinary least-

squares technique has the lowest average MAD and average MSD.

The median slope, weighted least-squares and mean slope

techniques have average MADs within 60% of ordinary least-
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Table 7. Measures of Dispersion for

Unequal Lot Sizes with Normal Error Terms

Ordinary Median Mean Weighted
Least-Squares Slope Slope Least-Squares

Technique Technique Technique Technique
AVERAGE OF 100:

* MAD 1,392.4 2,035.8 2,150.8 2,067.6
MSO 710,770.0 2,792,609.0 2,689,005.0 3,540,134.0

squares. The median slope and mean slope techniques have

average MSDs over 350% greater while the weighted least-

squares technique has the highest average MSD, almost five

times that of ordinary least-squares. This is unexpected

since weighted least-squares should better fit the data when

the data has unequal weights. Resolution of this may require

that the errors by lot be weighted by lot size.

In conclusion, the use of weighted least-squares on Case

II data resulted in the overall least range but the most bias

in the parameters estimated and the highest overall

dispersion. This yielded a combination of high bias on the

first unit cost and low bias on the learning curve

coefficient which should on average result in low predictions

of future costs. The ordinary least-squares technique has

the least bias and smallest dispersion but the widest range.

Tnis resulted in a combination of high bias on the first unit

cost and a split, or almost no low, bias on the learning

curve coefficient yielding high predictions of future costs

that will become low predictions after many, many units.

S Both the median slope and the mean slope techniques have more

.5V/C; 4 5
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bias than the ordinary least-squares technique and greater

ranges over the first unit cost and learning curve

coefficient than the weighted least-squares technique.

Equal Lot Sizes with Triangle Error Terms.

Analysis of the box-and-whisker plots (plots not shown, see

Table 8 for data) shows that the ordinary least-squares

Table 8. Estimated First Unit Cost for

Equal Lot Sizes with Triangle Error Terms

Population or True First Unit Cost = 25,000

Ordinary Median Mean

Least-Squares Slope Slope
Technique Technique Technique

Maximum 27,943.2 Maximum 29,210.4 Maximum 31,814.6

95% 27,013.9 95% 27,783.4 95% 29,505.2

75% 25,288.1 75% 26,055.2 75% 26,503.5

Mean 24,599.4 Mean 24,844.4 Mean 25,135.7
Median 24,489.9 Median 24,727.2 Median 24,994.6

25% 23,985.1 25% 23,784.0 25% 23,411.4

5% 22,630.1 5% 22,196.5 5% 21,278.9
Minimum 20,996.2 Minimum 21,321.9 Minimum 20,134.3

RANGE:
Total 6,947.0 7,888.5 11,680.3

1st-3rd Quartile 1,303.0 2,271.2 3,092.1

91A5:

Mean -400.6 -155.6 136.7

Median -510.1 -272.8 -5.4

technique has the lowest range for the first unit cost. The

median slope technique increases the range by almost 14%

*Q while the mean slope technique has the largest range, over

6 6 greater than the range of ordinary least-squares. The

mean slope technique is almost centered with a very small

high bias, the median slope technique has low bias and the
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ordinary least-squares technique has the most low bias, about

twice the bias of the median slope technique. The impact of

high bias is a higher first unit cost than the population

value while the impact of low bias is a lower first unit cost

* than the population value. A wider range of first unit costs

increases the probability of getting a first unit cost

significantly different than the population value.

The distributions of the learning curve coefficients

based on an analysis of the box-and-whisker plots (plots not

shown, see data in Table 9) show that the ordinary least-

squares technique has the smallest range. The median slope

technique has a range over 12% larger and the mean slope

Table 9. Estimated Learning Curve Coefficient for
Equal Lot Sizes with Triangle Error Terms

J) Population or True Coefficient = -.321928095

Ordinary Median Mean

Least-Squares Slope Slope

Technique Technique Technique

Maximum -0.285139 Maximum -0.281546 Maximum -0.274801

95% -0.299257 95% -0.297417 95% -0.288616

75% -0.308678 75% -0.308188 75% -0.307904

Mean -0.316054 Median -0.318006 Median -0.319935
Median -0.316175 Mean -0.318215 Mean -0.320172

• 25% -0.321786 25% -0.329008 25% -0.334362

5% -0.334803 5% -0.338870 5% -0.354159

Minimum -0.344565 Minimum -0.348343 Minimum -0.359162

RANGE:

Total 0.059426 0.066797 0.084361

lst-3rd Quartile 0.013108 0.020820 0.026458

BIAS:

Mean 0.005874 0.003713 0.001756

Median 0.005753 0.003922 0.001993
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technique has the largest range, nearly 42% greater than the

range of ordinary least-squares. The mean slope technique

has the smallest bias, slightly high. The median slope

technique has about twice the bias and the ordinary least-

squares technique has nearly triple the bias of the mean

slope technique. The result of high bias for the learning

curve coefficient is a higher learning curve slope and a

lower rate of learning than with the population value. As

with the first unit cost range, the wider the range the more

often there will be a larger difference between the fitted

value and the true value.

The dispersion of the data points around the fitted

learning curve line (see data in Table 10) shows the ordinary

Table 10. Measures of Dispersion for

Equal Lot Sizes with Triangle Error Terms

Ordinary Median Mean

Least-Squares Slope Slope
Technique Technique Technique

AVERAGE OF 100:

MAD 847.9 1,255.3 1,468.5
MS0 162,314.7 521,723.4 827,811.2

least-squares technique has the lowest average MAD and

average MSD. The median slope technique has an increase of

48% for the average MAD and the mean slope technique has the

% highest MAD, over 73% higher than for ordinary least-squares.

The median slope technique has an increase of over 221% for
%P
S the average MSD and the mean slope technique has the highest
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average MSD, about 410% higher than the MSD of ordinary

least-squares. As the average MAD increases, the data points

are further from the fitted line. As the MSD increases, the

data points are further from the fitted line, and more

importance is place on data points that are far from the

fitted line. Note that even when the type of error term

changes, ordinary least-squares still fits the data with the

smallest error.

In conclusion, the use of the ordinary least-scuares

technizue on Case III data resulted in the smallest range and

least dispersion but the most bias in the parameters

estimated. The combination of low bias on the first unit

cost and high bias on the learning curve coefficient will

result in high predictions of future costs. On the other

hand, the mean slope technique gives generally less biased

estimates of the first unit cost and learning curve

coefficients, but a much greater range and dispersion of

values. The median slope technique has more bias than the

mean slope technique and has greater range than the ordinary

least-squares technique. As stated before, the result of low

bias on the first unit cost and high bias on the learning

curve coefficient is high predictions of future costs over

the population. This bias is greatest with the ordinary

least-squares technique. On average, the better predictions

of future costs will be made by the mean slope technique.

However, the higher dispersion and larger range allows more
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opportunity for the estimates to be significantly different

than the population values.

Unequal Lot Sizes with Triangle Error Terms.

Analysis of the box-and-whisker plots (plots not shown, see

Adata in Table 11) shows the weighted least-squares technique

-/ Table 11. Estimated First Unit Cost for

Unequal Lot Sizes with Triangle Error Terms

Population or True First Unit Cost = 25,000

Ordinary Median Mean Weighted
Least-Squares Slope Slope Least-Squares

Technique Technique Technique Technique

Maximum 29,486.0 Maximum 29,996.0 Maximum 29,182.7 Maximum 29,287.6

95% 28,638.0 95% 28,852.6 95% 28,446.8 95% 28,419.4

75% 27,035.4 75% 27,137.3 75% 26,944.3 75% 26,801.5

Mean 25,343.4 Mean 25,568.3 Mean 25,538.3 Mean 25,812.3
Median 25,159.6 Median 25,504.3 Median 25,391.5 Median 25,687.0

25% 23,677.8 25% 24,161.3 25% 24,250.3 25% 24,752.3
5% 22,263.3 5% 22,258.6 5% 22,986.5 5% 23,552.6

Minimum 20,425.3 Minimum 19,94 9.7 Minimum 20,759.7 Minimum 21,793.3

RANGE:

Total 9,060.7 10,046.3 8,423.0 7,494.3

Ist-3rd

Quartile 3,357.6 2,976.0 2,694.0 2,049.2

BIAS:

Mean 343.4 568.3 538.3 812.3
Median 159.6 504.3 391.5 687.0

has the smallest range for the first unit cost. The mean

slope technique increases the range over 12% and the

Vordinary least-squares technique increases the range over

20%. The median slope technique has the largest range, over

34% greater than the smallest range. The ordinary least-

squares technique has the least bias, with the average
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estimated first unit cost somewhat above the population

value. The mean slope technique has higher bias, about

double, and the median slope technique has even higher bias,

a little more than double. The weighted least squares

technique has the largest high bias, about three times

greater than for ordinary least-squares. The result of high

bias is higher first unit costs than the population value.

The dispersions of the learning curve coefficients from

the box-and-whisker plots (plots not shown, see data in Table

12) show that the weighted least-squares technique has the

lowest range. The mean slope technique has a higher range

while the median slope technique has the next to the largest

Table 12. Estimated Learning Curve Coefficient for

Unequal Lot Sizes with Triangle Error Terms

Population or True Coefficient = -.321928095

Ordinary Median Mean Weighted

Least-Squares Slope Slope Least-Squares

Technique Technique Technique Technique

Maximum -0.277082 Maximum -0.277520 Maximum -0.286985 Maximum -0.292247

95% -0.292436 95% -0.298026 95% -0.304547 95% -0.305739

75% -0.307230 75% -0.313693 75% -0.315566 75% -0.316435

Mean -0.321065 Mean -0.324275 Median -0.323399 Median -0.324918

Median -0.321460 Median -0.324411 Mean -0.324171 Mean -0.325823

25% -0.336550 25% -0.335525 25% -0.334843 25% -0.336008

5% -0.349381 5% -0.348340 5% -0.345254 5% -0.347735

Minimum -0.356997 Minimum -0.353926 Minimum -0.354738 Minimum -0.352516

RANGE:
Total 0.079915 0.076406 0.067753 0.060269

Ist-3rd

Quartile 0.029320 0.021832 0.019277 0.019573

15BIAS:

M- Mean 0.000863 -0.002347 -0.002243 -0.003895

Median 0.000468 -0.002483 -0.001471 -0.002990
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range. The ordinary least-squares technique has the highest

range, about 32.6% greater than for weighted least-squares.

However, the ordinary least-squares technique has the least

bias, with the average estimated learning curve coefficient

only slightly above the population or true value. The other

techniques are biased low, or below the population value.

The mean slope technique has the smallest low bias, about

three times that of ordinary least-squares. The median slope

technique has essentially the same low bias as the mean S]ope

technique and the weighted least-squares technique has the

most low bias, about six times that of ordinary least-

squares. The result of low bias on the learning curve

coefficient is a lower learning curve slope than for the

population, the estimated decrease in costs is thus more than

the population experiences. The result of high bias on the

learning curve coefficient is a higher learning curve slope

than that of the population, the estimated decrease in costs

is less than the population experiences.

The dispersion of the data points around the fitted

learning curve line shows (see Table 13) the ordinary least-

squares technique fits best on average using MAD and MSD.

The median slope technique has an average MAD increase over

43%, the weighted least-squares technique has an average MAD

increase of almost 49% and the mean slope technique has the

highest MAD, an average MAD increase over 56% that of

ordinary least-squares. The mean slope technique has an
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Table 13. Measures of Dispersion for
Unequal Lot Sizes with Triangle Error Terms

Ordinary Median Mean Weighted
Least-Squares Slope Slope Least-Squares
Technique Technique Technique Technique

AVERAGE OF 100:
o MAD 1,571.1 2,252.2 2,454.1 2,336.2

MSD 816,844.6 3,125,297.0 3,085,647.0 4,163,786.0

average MSD almost 278% higher, the median slope technique

has an average MSD nearly 283% higher and the weighted least-

squares technique has the highest average MSD, nearly 410%

higher than for ordinary least-squares. When comparing

increases, the larger increase of the average MAD of the mean

slope technique versus the lower increase of the average MSD

shows that the data points are all equally dispersed, with

fewer outlying points. The greater the dispersion of data

points around the fitted learning curve line, the greater the

possibility of the future costs of units being far from the

fitted line value.

In conclusion, the use of the weighted least-squares

.technique on Case IV data gives the smallest range and the

second smallest dispersion but the most bias in the

parameters estimated. This technique yielded a combination

of high bias on the first unit cost and low bias on the

j- learning curve coefficient which would result in low

predictions of future costs. The ordinary least-squares

technique generally gives the least biased estimates of the

first unit cost and the learning curve coefficient and the
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least dispersion, but a much larger range of parameter

values. This situation yielded a combination of high bias on

the first unit cost and high bias on the learning curve

coefficient which results in high predictions of futurc

costs. The median slope and mean slope techniques have more

bias than the ordinary least-squares technique, wider ranges

than the weighted least-squares technique and more dispersion

than both the least-sguares techniques. The predictions from

the median slope and mean slope techniques are in between the

weighted and ordinary least-squares techniques results.

Analysis of Cost Predictions. The various learning

curve fitting techniques were compared to see how each

technique predicted future costs. The data used to do these

comparisons were the predictions from the 100 production

runs. These predictions were also compared to the population

or true future unit cost. No error term was included in

these true future costs since the true cost is known.

Independence of the error terms assures that the comparison

of predictions to the true population value is sufficient.

The cases are discussed in the same order as in the prior

section.

01, Equal Lot Sizes with Normal Error Terms. Analysis

of predicted future ccsts was done on the predictions of

costs for unit 225 and unit 800.

The analysis showed that the average predicted costs of

unit 225 (see Table 14.) are above the population cost for
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Table 14. Predicted Cost of Unit 225 for

Equal Lot Data with Normal Error Terms

Mean
O a a uPrediction Range
Ordinary Least-Squares 4415.10 343.34
Median Slope 4410.98 570.24

Mean Slope 4401.54 578.50

Population Cost 437 2.26

4 all techniques, but less than 1% above. The mean slope

technique's average prediction is closest tc tnr :o-at~on

cost. The median slope technique's average predlczion is a

little higher than the prediction from the mean slope

technique. The ordinary least-squares techn.Uue's average

prediction is the highest and furthest from the population

cost. On the other hand, the ordinary least-szuares

technique has the smallest range of predictions, the median

slope technique has a range of predictions over 66% larger

and the mean slope technique has the largest range or

predictions (over 68% above the ordinary least-squares

k range) .

The analysis of the costs of unit 800 (see Table 15.)

Table 15. Predicted Cost of Unit 300 for
Equal Lot Data with Normal Error Terms

Me a n
Prediction Range

Ordinary Least-Squares 2958.32 400.30
Median Slope 2945. 48 465. 18
Mean Slope 2929.32 503.24

Population Cost 2906.39
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shows that the average predicted costs were within 2% above

the population cost of unit 800 for all technizues. The mean

slope technique's average prediction is closest to the

population cost, about .79% higher. The median slope

technique's average prediction is the next higher, about

1.34% greater than the population cost. The ordinary least-

squares technique's average prediction is the highest, almost

1.79% above the population cost. On the other hand, the

ordinary least-squares technique again has the smallest range

of predicted cost, the median slope technique has a range

*over 16% higher and the mean slope techniques has the highest

range, almost 25% higher.

The predictions of future costs for units 225 and 800 in

Case I are consistent with the prior analysis of the fit of

the three techniques. The ordinary least-squares

technique's average prediction of cost is getting further

from the population cost at a faster rate than for the median

and mean slope technique. The ranges of the predicted values

for the different techniques more similar.

'Unequal Lot Sizes with Normal Error Terms.

Analysis of predicted future costs was done on the

predictions of costs for unit 225 and unit 800.

The analysis shows that the average predicted costs of

unit 225 (see Table 16.) are above the population cost for

all techniques, but less than 1.1% above. The mean slope

technique's average prediction is closest to the population

:5 6
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Table 16. Predicted Cost of Unit 225 for
Unequal Lot Data with Normal Error Terms

Mean
Prediction Range

Ordinary Least-Squares 4419.45 499.10
Mledian Slope 4332.93 591.42
Mean Slope 4330.43 432.00

Weighted Least-Squares 4390.09 304.74

Population Cost 4372.26

cost while the median slope technique's average prediction is

a little higher. The weighted least-squares technique's

-average prediction is more than double the bias of the mean

* slope technique's prediction. On the other hand, the

ordinary least-squares technique predicted a mean cost that

was the highest and furthest from the population cost, almost

six times the bias of the mean slope technique. The weighted

least-squares technique has the smallest range of

predictions, the mean slope technique has a range over 53%

larger, the ordinary least-squares technique has a range 64.

larger and the median slope technique has the largest range,

over 94% larger than the range of weighted least-squares.

The analysis of the costs of unit 800 (see Table 17.)

shows that the average predicted costs are within 1.3% above

and .2% below the population cost of unit 800. The median

slope technique's average prediction is closest to the

population cost, about .07% lower. The weighted least-

squares technique's average prediction is the next lower,

more than double the median slope difference. The mean slope
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Table 17. Predicted Cost of Unit 800 for
Unequal Lot Data with Normal Error Terms

Mean
Prediction Range

Ordinary Least-Squares 2942.63 607.59
Median Slope 2904.16 517.34
Mean Slope 2900.39 427.36
Weighted Least-Squares 2901.35 280.43

Population Cost 2906.39

technique's average prediction is lowest, just .19% below she

poj.ulation cost. The ordinary least-squares technijue'z

average prediction is above the population value, over 1-4'

higher. On the other hand, the weighted least-squares

technique has the smallest range of predicted cost, the mean

slope technique has a range over 12% higher, the median slope

technique has a range about 36% higher and the ordinary

least-squares technique has a range almost 60% higher than

the range of the weighted least-squares technique.

The predictions of future costs for units 225 and 320 in

Case II are consistent with the prior analysis of the fit of

the four techniques. Because of the combinations of bias,

range and distribution, the prior ranking of techniques is

not followed. These combinations result in the best

prediction from a technique that has mid-level ratings for

bias, range and dispersion. The weighted least-squares

technique, which had the most bias and smaller ranges did not

have the highest predictions. The median slope, weighted

least-squares and mean slope techniques went from predicting
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above the population to predicting costs below the population

cost. These techniques will predict costs further below the

population for units greater than unit 800. The ordinary

least-squares technique has mean predicted costs that are

increasingly above the population value as the unit number

gets larger.

Equal Lot Sizes with Triangle Error Terms.

Analysis of predicted future costs was done on the

predictions of costs Lor unit 225 and unit 800.

The analysis shows that the average predicted costs of

unit 225 (see Table 13.) are above the population cost for

Table 18. Predicted Cost of Unit 225 for
Equal Lot Data with Triangle Error Terms

Meean
Prediction Range

Ordinary Least-Squares 4436.37 345.49
Median Slope 4425.54 564.68
2,ean Slope 4413.77 388.37

Population Cost 4372.26

all techniques, but less than 1.5% above. The mean -lope

-.!  rechnique's average prediction is closest to the population

cost. The median slope technique's average prediction is a

little higher than for the mean slope technique. The

ordinary least-squares technique's average prediction is
'U

highest and furthest from the population cost, almost 1.5%

above the population cost. On the other hand, the ordinary

least-squares technique has the smallest range of
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predictions, the median slope technique has a range over 63%

higher and the mean slope technique has the largest range of

predicted costs, over 70% above ordinary least-squares.

The analysis of the costs of unit 800 (see Table 19.)

p

Table 19. Predicted Cost of Unit 800 for
Equal Lot Data with Triangle Error Terms

Mean
, Prediction Range

Ordinary Least-Squares 2971.77 37,4.73
Median Slope 2956.74 537.84
Mean Slope 2945.43 608.65

* Population Cost 2906.39

shows that the average predicted costs are within 2.3% above

the population cost of unit 800 for all techniques. The mean

slope technique's average prediction is closest to the

population cost, over 1.3% greater. The median slope

technique's average prediction is higher, over 1.7% greater

than the population cost. The ordinary least-squares

technique's average prediction is the highest, over 2.2%

• above the population cost. On the other hand, the ordinary

least-squares technique has the smallest range of predicted

cost, the median slope technique has a range over 43% higher

and the mean slope technique has the largest range, over 62%

higher than the rarle of ordinary least-squares.

The predictions of future costs for unit 225 and 800 in

Case III are consistent with the prior analysis of the fit of
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the three techniques. The ordinary least-squares technique

mean predicted cost is getting further from the population

cost at a faster rate than for the median and mean slope

technique. The ranges of the predicted values for the

different techniques are converging.

Unequal Lot Sizes with Triangle Error Terms.

Analysis of predicted future costs was done on the

oredictions of costs for unit 225 and unit 800.

The analysis shows that the average predicted costs of

unit 225 (see Table 20.) are above the population cost for

Table 20. Predicted Cost of Unit 225 for
Unequal Lot Data with Triangle Error Terms

Me an
Prediction Range

Ordinary Least-Squares 4439.13 443.57
Median Slope 4403.83 721.50
Mean Slope 4403.71 655.01
Weighted Least-Squares 4413.36 324.83

Poipulation Cost 4372.26

all techniques, but less than 1.6% above. The mean slope

technique's average prediction is closest to the population

cost. The median slope technique's average prediction is

slightly higher while the weighted least-squares technique's

average prediction is a little above the prediction from the

mean slope technique. On the other hand, the ordinary least-

squares technique has a mean predicted cost that is the

highest and furthest from the population cost, almost double
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the mean slope deviation. The weighted least-squares

technique has the smallest range of predictions, the ordinary

least-squares has a range over 37% higher, the mean slope

technique has a range almost 102% higher and the median slope

technique has the highest range, over 122% above that of

weighted least-squares.

The analysis of the costs of unit 800 (see Table 21.)

Table 21. Predicted Cost of Unit 300 for

Unequal Lot Data with Triangle Error Terms

14% Me an

Prediction Range
Ordinary Least-Squares 2956.15 584.32
Median Slope 2919.72 642.79
Mean Slope 2919.60 530.64
Weighted Least-Squares 2920.19 398.58

Population Cost 2906.39

shows that the average predicted costs are within 1.8% above

the population cost of unit 300 for all techniques. The mean

slope technique's average prediction is closest to the

population cost, over .45% higher. The mean slope

• technique's average prediction is slightly higher while the

weighted least-squares technique's average prediction is the

next higher, over .47% above the population cost. The

ordinary least-squares technique's average prediction is the

,I, highest above the population cost, over 1.71% higher. On the

other hand, the weighted least-squares technique has the

smallest range of predicted cost, the mean slope technique
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has a range about 33% higher, the ordinary least-squarez

technique has a range over 46% higher and the median slop:e

technique has the largest range, over 1% higher than the

range of weighted least-squares.

The predictions of future costs for units 225 and 803 in

Case IV are consistent with the prior analysis of the fit of

the four techniques. However, as with predictions in Case

II, the data follows the general fit but the rank order is

not based on the rank of the biases and ranges. The best

predictions were from a technique with mid-level bias, range

and dispersion ratings. The median slope, weighted least-

squares and mean slope techniques are going from predicting

above the population to predicting costs below the population

cost. These techniques will go below and get further below

the population cost for predictions of costs beyond unit 800.

The ordinary least-squares technique predicts costs that are

getting more above the population value and the predicted

costs will be further above the population value for units

beyond 800.

I
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V. Conclusions and Recommendations

Conclusions

The analysis of the fitting techniques for the four

cases yields no clear cut best technique. There is no best

technique overall and no best technique in any of the four

cases reviewed. As shown in Tables 22 and 23, there are

tradeoffs for each situation.

As can be seen in Table 22, when data is from Case I,

equal lot sizes with normal error terms, the ordinary least-

squares technique has the most bias but the smallest range

while the mean slope technique has the least bias but the

largest range. The choice of a technique for prediction must

recognize these tradeoffs. The mean slope technique, on

average, will provide a better estimate of future costs but

with a greater chance of larger deviations. On the other

hand, the ordinary least-squares technique will provide less

chance of large deviations but predictions will be higher

than population values on average.

As can be seen in Table 22, when data is from Case II,

unequal lot sizes with normal error terms, the situation is

more complex. The weighted least-squares technique has the

most biased estimates, yet the tightest ranges, for the

parameters; it also has the tightest prediction ranges and

good average predictions. The average prediction gets better

in comparison to the other techniques when the unit to be
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predicted is further from the data. For units close to the

data the average mean slope and median slope technique

predictions were closest to the population or true cost. As

the unit being predicted gets further from the data, the

median slope technique has the best average prediction.

These three techniques go from predicting above the

population cost to predicting below the population cost as
:,... -

the unit being predicted is further from the data. The

ordinary least-squares technique has the highest average

prediction when close to the data and average predictions

61_ from this technique get higher above the population cost when

the unit being predicted is further from the data. The

choice of a technique for future predictions should recognize

these tradeoffs. The mean slope technique, on average, will

provide a less biased prediction of future costs close to the

data but with a greater chance of larger deviations. The

median slope technique, on average, will provide a less

biased prediction of future costs but with the greatest

chance of larger deviations, when units are close to the

data. These techniques have average predictions that go from

above to below the population cost. On the other hand, the

weighted least-squares technique will provide less chance of

A10 larger deviations but the predictions will be a little

further from the population values on average.

As can be seen in Table 23, when data is from Case III,

equal lot sizes with triangle error terms, the ordinary
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least-squares technique has the most bias, tightest ranges

and least dispersion. This yielded the tightest ranges and

the most biased average predictions. The mean slope

technique has the least bias, widest ranges and most

dispersion. This yielded the widest range and the least

biased average predictions. The median slope technique was

between the other two techniques. The choice of a technique

to base future predictions on must recognize these problems.

The mean slope technique, on average, will provide a better

estimate of future costs but with a greater chance of large

deviations. On the other hand, the ordinary least-squares

technique will provide less chance of large deviations but

the predictions will be higher than population values on

average.

As can be seen in Table 22, when data is from Case IV,

equal lot sizes with triangle error terms, the situation is

again more complex. The weighted least-squares technique has

the tightest ranges, the most biased estimates of the

parameters and close to the most dispersion, or worst fit.

."-. However, weighted least-squares has the tightest prediction

ranges and good average predictions. The average prediction

gets closer to the population cost as the unit being

predicted is further from the data. The average predictions

were closest to the population cost for the mean slope and

the median slope techniques. These three techniques are

predicting average costs closer to the population cost as the
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unit is further from the data. These average costs will go

below the population cost somewhere beyond unit 800. The

ordinary least-squares technique has the highest average

- prediction when close to the data. Average predictions from

this technique get higher above the population cost with

larger unit numbers. The choice of a technique must

recognize these tradeoffs. The mean slope and the median

slope techniques, on average, will provide good predictions

of future costs but each technique has a greater chance of

larger deviations. These techniques have average predictions

that go from above to closer above the population cost anu

will go below the population costs somewhere beyond unit 3C.

On the other hand, the weighted least-squares technique will

provide less chance of larger deviations but the predictions

will be a little further from the population values on

average.

At this point, the analyst faced with a learning curve

problem should feel comfortable that either the ordinary

least-squares or the weighted least-squares technique can

provide reasonably good estimates of the learning curve

equation parameters (A and B) . A quick look at the relative

significance indicates that the bias in the estimate of the

first unit cost (A) is more significant than the bias in the

estimate of the learning curve coefficient (B). The mean

slope and the median slope techniques offer promise of less

bias of the first unit cost and learning curve coefficient
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estimates, at the expense of increased dispersion in the

estimates. Since the mean slope and median slope fitting

techniques are not included in any learning curve programs

currently available to the analysts, the application of these

techniques must be postponed.

In summary, when data is in the most common form, that

of unequal lot sizes, the weighted least-squares technique

does provide good predictions with a tight range. The

ordinary least-squares technique has a larger bias that

increases with the distance from the data, but still provides

good predictions.

Recommendations for Further Research

There are several areas that can use further study.

First, the difference between the actual lot plot point and

the heuristic lot plot point for the first lot should be

investigated. How close does the heuristic approximate the

-;nit that hisz the average cost of the first lot. The

Ui-ference may be only slight but the impact has not been

addressed. If the heuristic is not a good approximator, tnen

new analysis should be done to see if an improved algorithm

would improve the performance of the fitting techniques.

Second, the weighted least-squares technique should be

investigated further. Analysis should concentrate on finding

a more accurate weighting of each lot. A more accurate

weighting should theoretically result in a better fit of

unequal lot data. This possibility, too, should be checked.
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Third, additional fitting techniques should be investigated.

The additional techniques should include nonlinear regression

.' and other techniques not identified by this thesis. These

new techniques should be compared among themselves and to the

techniques investigated in this thesis. Fourth, statistical

testing for significance of the biaF should be considered.

Is a bias of two percent statistically significant? Is this

ajparent bias due to some other factor? The answer to these

questions depends on the experimental design and sample size.

Resolution of this question might require replication and

expansion of the study from 100 production runs to 500 or

1300. Fifth, a program should be written so that the mean

slope and the median slope techniques can be applied to real

data. The comparison of results from these two techniques

and the ordinary least-squares and the weighted least-squares

techniques could be useful.
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